Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(8): e1010848, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37585488

RESUMO

N-terminal ends of polypeptides are critical for the selective co-translational recruitment of N-terminal modification enzymes. However, it is unknown whether specific N-terminal signatures differentially regulate protein fate according to their cellular functions. In this work, we developed an in-silico approach to detect functional preferences in cellular N-terminomes, and identified in S. cerevisiae more than 200 Gene Ontology terms with specific N-terminal signatures. In particular, we discovered that Mitochondrial Targeting Sequences (MTS) show a strong and specific over-representation at position 2 of hydrophobic residues known to define potential substrates of the N-terminal acetyltransferase NatC. We validated mitochondrial precursors as co-translational targets of NatC by selective purification of translating ribosomes, and found that their N-terminal signature is conserved in Saccharomycotina yeasts. Finally, systematic mutagenesis of the position 2 in a prototypal yeast mitochondrial protein confirmed its critical role in mitochondrial protein import. Our work highlights the hydrophobicity of MTS N-terminal residues and their targeting by NatC as important features for the definition of the mitochondrial proteome, providing a molecular explanation for mitochondrial defects observed in yeast or human NatC-depleted cells. Functional mapping of N-terminal residues thus has the potential to support the discovery of novel mechanisms of protein regulation or targeting.


Assuntos
Proteoma , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteoma/metabolismo , Transporte Proteico , Proteínas Fúngicas/metabolismo , Proteínas Mitocondriais/metabolismo
2.
Dis Model Mech ; 16(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083953

RESUMO

The list of mitochondrial DNA (mtDNA) variants detected in individuals with neurodegenerative diseases is constantly growing. Evaluating their functional consequences and pathogenicity is not easy, especially when they are found in only a limited number of patients together with wild-type mtDNA (heteroplasmy). Owing to its amenability to mitochondrial genetic transformation and incapacity to stably maintain heteroplasmy, and the strong evolutionary conservation of the proteins encoded in mitochondria, Saccharomyces cerevisiae provides a convenient model to investigate the functional consequences of human mtDNA variants. We herein report the construction and energy-transducing properties of yeast models of eight MT-ATP6 gene variants identified in patients with various disorders: m.8843T>C, m.8950G>A, m.9016A>G, m.9025G>A, m.9029A>G, m.9058A>G, m.9139G>A and m.9160T>C. Significant defect in growth dependent on respiration and deficits in ATP production were observed in yeast models of m.8950G>A, m.9025G>A and m.9029A>G, providing evidence of pathogenicity for these variants. Yeast models of the five other variants showed very mild, if any, effect on mitochondrial function, suggesting that the variants do not have, at least alone, the potential to compromise human health.


Assuntos
Saccharomyces cerevisiae , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Virulência
3.
Hum Mol Genet ; 32(8): 1313-1323, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36434790

RESUMO

The mitochondrial DNA mutation m.9032T>C was previously identified in patients presenting with NARP (Neuropathy Ataxia Retinitis Pigmentosa). Their clinical features had a maternal transmission and patient's cells showed a reduced oxidative phosphorylation capacity, elevated reactive oxygen species (ROS) production and hyperpolarization of the mitochondrial inner membrane, providing evidence that m.9032T>C is truly pathogenic. This mutation leads to replacement of a highly conserved leucine residue with proline at position 169 of ATP synthase subunit a (L169P). This protein and a ring of identical c-subunits (c-ring) move protons through the mitochondrial inner membrane coupled to ATP synthesis. We herein investigated the consequences of m.9032T>C on ATP synthase in a strain of Saccharomyces cerevisiae with an equivalent mutation (L186P). The mutant enzyme assembled correctly but was mostly inactive as evidenced by a > 95% drop in the rate of mitochondrial ATP synthesis and absence of significant ATP-driven proton pumping across the mitochondrial membrane. Intragenic suppressors selected from L186P yeast restoring ATP synthase function to varying degrees (30-70%) were identified at the original mutation site (L186S) or in another position of the subunit a (H114Q, I118T). In light of atomic structures of yeast ATP synthase recently described, we conclude from these results that m.9032T>C disrupts proton conduction between the external side of the membrane and the c-ring, and that H114Q and I118T enable protons to access the c-ring through a modified pathway.


Assuntos
Prótons , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Trifosfato de Adenosina/metabolismo , Mutação , DNA Mitocondrial/genética
4.
Methods Mol Biol ; 2497: 221-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771445

RESUMO

Numerous diseases in humans have been associated with mutations of the mitochondrial genome (mtDNA). This genome encodes 13 protein subunits of complexes involved in oxidative phosphorylation (OXPHOS), a process that provides aerobic eukaryotes with the energy-rich adenosine triphosphate molecule (ATP). Mutations of the mtDNA may therefore have dramatic consequences especially in tissues and organs with high energy demand. Evaluating the pathogenicity of these mutations may be difficult because they often affect only a fraction of the numerous copies of the mitochondrial genome (up to several thousands in a single cell), which is referred to as heteroplasmy. Furthermore, due to its exposure to reactive oxygen species (ROS) produced in mitochondria, the mtDNA is prone to mutations, and some may be simply neutral polymorphisms with no detrimental consequences on human health. Another difficulty is the absence of methods for genetically transforming human mitochondria. Face to these complexities, the yeast Saccharomyces cerevisiae provides a convenient model for investigating the consequences of human mtDNA mutations in a defined genetic background. Owing to its good fermentation capacity, it can survive the loss of OXPHOS, its mitochondrial genome can be manipulated, and genetic heterogeneity in its mitochondria is unstable. Taking advantage of these unique attributes, we herein describe a method we have developed for creating yeast models of mitochondrial ATP6 gene mutations detected in patients, to determine how they impact OXPHOS. Additionally, we describe how these models can be used to discover molecules with therapeutic potential.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Genes Mitocondriais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Virulência
5.
Genetics ; 220(3)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35100419

RESUMO

The yeast mitochondrial ATP synthase is an assembly of 28 subunits of 17 types of which 3 (subunits 6, 8, and 9) are encoded by mitochondrial genes, while the 14 others have a nuclear genetic origin. Within the membrane domain (FO) of this enzyme, the subunit 6 and a ring of 10 identical subunits 9 transport protons across the mitochondrial inner membrane coupled to ATP synthesis in the extra-membrane structure (F1) of ATP synthase. As a result of their dual genetic origin, the ATP synthase subunits are synthesized in the cytosol and inside the mitochondrion. How they are produced in the proper stoichiometry from two different cellular compartments is still poorly understood. The experiments herein reported show that the rate of translation of the subunits 9 and 6 is enhanced in strains with mutations leading to specific defects in the assembly of these proteins. These translation modifications involve assembly intermediates interacting with subunits 6 and 9 within the final enzyme and cis-regulatory sequences that control gene expression in the organelle. In addition to enabling a balanced output of the ATP synthase subunits, these assembly-dependent feedback loops are presumably important to limit the accumulation of harmful assembly intermediates that have the potential to dissipate the mitochondrial membrane electrical potential and the main source of chemical energy of the cell.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Sci Rep ; 11(1): 12641, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135385

RESUMO

NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients' tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed.


Assuntos
Complexo I de Transporte de Elétrons/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas Mitocondriais/genética , Mutação , NADH Desidrogenase/genética , Adulto , Benzoquinonas/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Humanos , Recém-Nascido , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Óperon , Plasmídeos/genética
7.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668157

RESUMO

Ion homeostasis is crucial for organism functioning, and its alterations may cause diseases. For example, copper insufficiency and overload are associated with Menkes and Wilson's diseases, respectively, and iron imbalance is observed in Parkinson's and Alzheimer's diseases. To better understand human diseases, Saccharomyces cerevisiae yeast are used as a model organism. In our studies, we used the vps13Δ yeast strain as a model of rare neurological diseases caused by mutations in VPS13A-D genes. In this work, we show that overexpression of genes encoding copper transporters, CTR1, CTR3, and CCC2, or the addition of copper salt to the medium, improved functioning of the vps13Δ mutant. We show that their mechanism of action, at least partially, depends on increasing iron content in the cells by the copper-dependent iron uptake system. Finally, we present that treatment with copper ionophores, disulfiram, elesclomol, and sodium pyrithione, also resulted in alleviation of the defects observed in vps13Δ cells. Our study points at copper and iron homeostasis as a potential therapeutic target for further investigation in higher eukaryotic models of VPS13-related diseases.


Assuntos
Proteínas de Transporte de Cobre/metabolismo , Cobre/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Transporte de Cobre/genética , Humanos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
Hum Mol Genet ; 30(5): 381-392, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33600551

RESUMO

The human ATP synthase is an assembly of 29 subunits of 18 different types, of which only two (a and 8) are encoded in the mitochondrial genome. Subunit a, together with an oligomeric ring of c-subunit (c-ring), forms the proton pathway responsible for the transport of protons through the mitochondrial inner membrane, coupled to rotation of the c-ring and ATP synthesis. Neuromuscular diseases have been associated to a number of mutations in the gene encoding subunit a, ATP6. The most common, m.8993 T > G, leads to replacement of a strictly conserved leucine residue with arginine (aL156R). We previously showed that the equivalent mutation (aL173R) dramatically compromises respiratory growth of Saccharomyces cerevisiae and causes a 90% drop in the rate of mitochondrial ATP synthesis. Here, we isolated revertants from the aL173R strain that show improved respiratory growth. Four first-site reversions at codon 173 (aL173M, aL173S, aL173K and aL173W) and five second-site reversions at another codon (aR169M, aR169S, aA170P, aA170G and aI216S) were identified. Based on the atomic structures of yeast ATP synthase and the biochemical properties of the revertant strains, we propose that the aL173R mutation is responsible for unfavorable electrostatic interactions that prevent the release of protons from the c-ring into a channel from which protons move from the c-ring to the mitochondrial matrix. The results provide further evidence that yeast aL173 (and thus human aL156) optimizes the exit of protons from ATP synthase, but is not essential despite its strict evolutionary conservation.


Assuntos
Mitocôndrias/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Complexos de ATP Sintetase/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , DNA Mitocondrial , Genes Mitocondriais , Humanos , Modelos Moleculares , Mutação , Domínios Proteicos , Subunidades Proteicas/metabolismo , Prótons
9.
Life (Basel) ; 10(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971864

RESUMO

With the advent of next generation sequencing, the list of mitochondrial DNA (mtDNA) mutations identified in patients rapidly and continuously expands. They are frequently found in a limited number of cases, sometimes a single individual (as with the case herein reported) and in heterogeneous genetic backgrounds (heteroplasmy), which makes it difficult to conclude about their pathogenicity and functional consequences. As an organism amenable to mitochondrial DNA manipulation, able to survive by fermentation to loss-of-function mtDNA mutations, and where heteroplasmy is unstable, Saccharomyces cerevisiae is an excellent model for investigating novel human mtDNA variants, in isolation and in a controlled genetic context. We herein report the identification of a novel variant in mitochondrial ATP6 gene, m.8909T>C. It was found in combination with the well-known pathogenic m.3243A>G mutation in mt-tRNALeu. We show that an equivalent of the m.8909T>C mutation compromises yeast adenosine tri-phosphate (ATP) synthase assembly/stability and reduces the rate of mitochondrial ATP synthesis by 20-30% compared to wild type yeast. Other previously reported ATP6 mutations with a well-established pathogenicity (like m.8993T>C and m.9176T>C) were shown to have similar effects on yeast ATP synthase. It can be inferred that alone the m.8909T>C variant has the potential to compromise human health.

10.
Elife ; 92020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32657755

RESUMO

A single nuclear gene can be translated into a dual localized protein that distributes between the cytosol and mitochondria. Accumulating evidences show that mitoproteomes contain lots of these dual localized proteins termed echoforms. Unraveling the existence of mitochondrial echoforms using current GFP (Green Fluorescent Protein) fusion microscopy approaches is extremely difficult because the GFP signal of the cytosolic echoform will almost inevitably mask that of the mitochondrial echoform. We therefore engineered a yeast strain expressing a new type of Split-GFP that we termed Bi-Genomic Mitochondrial-Split-GFP (BiG Mito-Split-GFP). Because one moiety of the GFP is translated from the mitochondrial machinery while the other is fused to the nuclear-encoded protein of interest translated in the cytosol, the self-reassembly of this Bi-Genomic-encoded Split-GFP is confined to mitochondria. We could authenticate the mitochondrial importability of any protein or echoform from yeast, but also from other organisms such as the human Argonaute 2 mitochondrial echoform.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/fisiologia , Citosol/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/fisiologia , Transporte Proteico
11.
Genes (Basel) ; 11(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708255

RESUMO

Several rare neurodegenerative diseases, including chorea acanthocytosis, are caused by mutations in the VPS13A-D genes. Only symptomatic treatments for these diseases are available. Saccharomyces cerevisiae contains a unique VPS13 gene and the yeast vps13Δ mutant has been proven as a suitable model for drug tests. A library of drugs and an in-house library of natural compounds and their derivatives were screened for molecules preventing the growth defect of vps13Δ cells on medium with sodium dodecyl sulfate (SDS). Seven polyphenols, including the iron-binding flavone luteolin, were identified. The structure-activity relationship and molecular mechanisms underlying the action of luteolin were characterized. The FET4 gene, which encodes an iron transporter, was found to be a multicopy suppressor of vps13Δ, pointing out the importance of iron in response to SDS stress. The growth defect of vps13Δ in SDS-supplemented medium was also alleviated by the addition of iron salts. Suppression did not involve cell antioxidant responses, as chemical antioxidants were not active. Our findings support that luteolin and iron may target the same cellular process, possibly the synthesis of sphingolipids. Unveiling the mechanisms of action of chemical and genetic suppressors of vps13Δ may help to better understand VPS13A-D-dependent pathogenesis and to develop novel therapeutic strategies.


Assuntos
Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Luteolina/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Produtos Biológicos/química , Proliferação de Células/efeitos dos fármacos , Proteínas de Transporte de Cobre/genética , Proteínas de Transporte de Cobre/metabolismo , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Luteolina/química , Fármacos Neuroprotetores/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Supressão Genética
12.
Int J Mol Sci ; 21(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708436

RESUMO

Probing the pathogenicity and functional consequences of mitochondrial DNA (mtDNA) mutations from patient's cells and tissues is difficult due to genetic heteroplasmy (co-existence of wild type and mutated mtDNA in cells), occurrence of numerous mtDNA polymorphisms, and absence of methods for genetically transforming human mitochondria. Owing to its good fermenting capacity that enables survival to loss-of-function mtDNA mutations, its amenability to mitochondrial genome manipulation, and lack of heteroplasmy, Saccharomyces cerevisiae is an excellent model for studying and resolving the molecular bases of human diseases linked to mtDNA in a controlled genetic background. Using this model, we previously showed that a pathogenic mutation in mitochondrial ATP6 gene (m.9191T>C), that converts a highly conserved leucine residue into proline in human ATP synthase subunit a (aL222P), severely compromises the assembly of yeast ATP synthase and reduces by 90% the rate of mitochondrial ATP synthesis. Herein, we report the isolation of intragenic suppressors of this mutation. In light of recently described high resolution structures of ATP synthase, the results indicate that the m.9191T>C mutation disrupts a four α-helix bundle in subunit a and that the leucine residue it targets indirectly optimizes proton conduction through the membrane domain of ATP synthase.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Potencial da Membrana Mitocondrial/genética , ATPases Mitocondriais Próton-Translocadoras/química , Modelos Químicos , Mutação , Fosforilação Oxidativa , Proteínas de Saccharomyces cerevisiae/química
13.
Biochim Biophys Acta Mol Cell Res ; 1867(5): 118661, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31987792

RESUMO

Artemisinin and its derivatives kill malaria parasites and inhibit the proliferation of cancer cells. In both processes, heme was shown to play a key role in artemisinin bioactivation. We found that artemisinin and clinical artemisinin derivatives are able to compensate for a mutation in the yeast Bcs1 protein, a key chaperon involved in biogenesis of the mitochondrial respiratory complex III. The equivalent Bcs1 variant causes an encephalopathy in human by affecting complex III assembly. We show that artemisinin derivatives decrease the content of mitochondrial cytochromes and disturb the maturation of the complex III cytochrome c1. This last effect is likely responsible for the compensation by decreasing the detrimental over-accumulation of the inactive pre-complex III observed in the bcs1 mutant. We further show that a fluorescent dihydroartemisinin probe rapidly accumulates in the mitochondrial network and targets cytochromes c and c1 in yeast, human cells and isolated mitochondria. In vitro this probe interacts with purified cytochrome c only under reducing conditions and we detect cytochrome c-dihydroartemisinin covalent adducts by mass spectrometry analyses. We propose that reduced mitochondrial c-type cytochromes act as both targets and mediators of artemisinin bioactivation in yeast and human cells.


Assuntos
Artemisininas/farmacologia , Citocromos c/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Artemisininas/química , Regulação para Baixo , Complexo III da Cadeia de Transporte de Elétrons/genética , Células HEK293 , Humanos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Hum Mol Genet ; 28(22): 3792-3804, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31276579

RESUMO

The m.8993T>G mutation of the mitochondrial MT-ATP6 gene has been associated with numerous cases of neuropathy, ataxia and retinitis pigmentosa and maternally inherited Leigh syndrome, which are diseases known to result from abnormalities affecting mitochondrial energy transduction. We previously reported that an equivalent point mutation severely compromised proton transport through the ATP synthase membrane domain (FO) in Saccharomyces cerevisiae and reduced the content of cytochrome c oxidase (Complex IV or COX) by 80%. Herein, we report that overexpression of the mitochondrial oxodicarboxylate carrier (Odc1p) considerably increases Complex IV abundance and tricarboxylic acid-mediated substrate-level phosphorylation of ADP coupled to conversion of α-ketoglutarate into succinate in m.8993T>G yeast. Consistently in m.8993T>G yeast cells, the retrograde signaling pathway was found to be strongly induced in order to preserve α-ketoglutarate production; when Odc1p was overexpressed, this stress pathway returned to an almost basal activity. Similar beneficial effects were induced by a partial uncoupling of the mitochondrial membrane with the proton ionophore, cyanide m-chlorophenyl hydrazone. This chemical considerably improved the glutamine-based, respiration-dependent growth of human cytoplasmic hybrid cells that are homoplasmic for the m.8993T>G mutation. These findings shed light on the interdependence between ATP synthase and Complex IV biogenesis, which could lay the groundwork for the creation of nutritional or metabolic interventions for attenuating the effects of mtDNA mutations.


Assuntos
Mitocôndrias/metabolismo , Miopatias Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Retinite Pigmentosa/metabolismo , Trifosfato de Adenosina/metabolismo , Ataxia/genética , Deficiência de Citocromo-c Oxidase/genética , DNA Mitocondrial/genética , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Transporte de Íons , Doença de Leigh , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Retinite Pigmentosa/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Biochim Biophys Acta Bioenerg ; 1860(7): 562-572, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31181185

RESUMO

Dozens of pathogenic mutations have been localized in the mitochondrial gene (MT-ATP6) that encodes the subunit a of ATP synthase. The subunit a together with a ring of identical subunits c moves protons across the mitochondrial inner membrane coupled to rotation of the subunit c-ring and ATP synthesis. One of these mutations, m.8851T>C, has been associated with bilateral striatal lesions of childhood (BSLC), a group of rare neurological disorders characterized by symmetric degeneration of the corpus striatum. It converts a highly conserved tryptophan residue into arginine at position 109 of subunit a (aW109R). We previously showed that an equivalent thereof in Saccharomyces cerevisiae (aW126R) severely impairs by an unknown mechanism the functioning of ATP synthase without any visible assembly/stability defect. Herein we show that ATP synthase function was recovered to varying degree by replacing the mutant arginine residue 126 with methionine, lysine or glycine or by replacing with methionine an arginine residue present at position 169 of subunit a (aR169). In recently described atomic structures of yeast ATP synthase, aR169 is at the center of a hydrophilic cleft along which protons are transported from the subunit c-ring to the mitochondrial matrix, in the proximity of the two residues known from a long time to be essential to the activity of FO (aR176 and cE59). We provide evidence that the aW126R change is responsible for electrostatic and steric hindrance that enables aR169 to engage in a salt bridge with cE59. As a result, aR176 cannot interact properly with cE5 and ATP synthase fails to effectively move protons across the mitochondrial membrane. In addition to insight into the pathogenic mechanism induced by the m.8851T>C mutation, the present study brings interesting information about the role of specific residues of subunit a in the energy-transducing activity of ATP synthase.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Humanos , Potencial da Membrana Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Fosforilação Oxidativa , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência
16.
Dis Model Mech ; 12(2)2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30658998

RESUMO

Mitochondria continually move, fuse and divide, and these dynamics are essential for the proper function of the organelles. Indeed, the dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs as well as preserving their integrity. As a consequence, mitochondrial fusion and fission dynamics and the proteins that control these processes, which are conserved from yeast to human, are essential, and their disturbances are associated with severe human disorders, including neurodegenerative diseases. For example, mutations in OPA1, which encodes a conserved factor essential for mitochondrial fusion, lead to optic atrophy 1, a neurodegeneration that affects the optic nerve, eventually leading to blindness. Here, by screening a collection of ∼1600 repurposed drugs on a fission yeast model, we identified five compounds able to efficiently prevent the lethality associated with the loss of Msp1p, the fission yeast ortholog of OPA1. One compound, hexestrol, was able to rescue both the mitochondrial fragmentation and mitochondrial DNA (mtDNA) depletion induced by the loss of Msp1p, whereas the second, clomifene, only suppressed the mtDNA defect. Yeast has already been successfully used to identify candidate drugs to treat inherited mitochondrial diseases; this work may therefore provide useful leads for the treatment of optic atrophies such as optic atrophy 1 or Leber hereditary optic neuropathy.


Assuntos
DNA Mitocondrial/metabolismo , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Dinâmica Mitocondrial , Schizosaccharomyces/metabolismo , Clomifeno/farmacologia , Hexestrol/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Domínios Proteicos , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
Biochim Biophys Acta Bioenerg ; 1860(1): 52-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414414

RESUMO

Protons are transported from the mitochondrial matrix to the intermembrane space of mitochondria during the transfer of electrons to oxygen and shuttled back to the matrix by the a subunit and a ring of identical c subunits across the membrane domain (FO) of ATP synthase, which is coupled to ATP synthesis. A mutation (m.9176 T > G) of the mitochondrial ATP6 gene that replaces an universally conserved leucine residue into arginine at amino acid position 217 of human subunit a (aL217R) has been associated to NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) and MILS (Maternally Inherited Leigh's Syndrome) diseases. We previously showed that an equivalent thereof in Saccharomyces cerevisiae (aL237R) severely impairs subunit a assembly/stability and decreases by >90% the rate of mitochondrial ATP synthesis. Herein we identified three spontaneous first-site intragenic suppressors (aR237M, aR237T and aR237S) that fully restore ATP synthase assembly. However, mitochondrial ATP synthesis rate was only partially recovered (40-50% vs wild type yeast). In light of recently described high-resolution yeast ATP synthase structures, the detrimental consequences of the aL237R change can be explained by steric and electrostatic hindrance with the universally conserved subunit a arginine residue (aR176) that is essential to FO activity. aL237 together with three other nearby hydrophobic residues have been proposed to prevent ion shortage between two physically separated hydrophilic pockets within the FO. Our results suggest that aL237 favors subunit c-ring rotation by optimizing electrostatic interaction between aR176 and an acidic residue in subunit c (cE59) known to be essential also to the activity of FO.


Assuntos
Trifosfato de Adenosina/biossíntese , Leucina/fisiologia , ATPases Mitocondriais Próton-Translocadoras/química , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Sequência Conservada , Humanos , Doença de Leigh/etiologia , Miopatias Mitocondriais/etiologia , ATPases Mitocondriais Próton-Translocadoras/genética , Subunidades Proteicas , Retinite Pigmentosa/etiologia , Relação Estrutura-Atividade
18.
Biochim Biophys Acta Bioenerg ; 1859(8): 602-611, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29778688

RESUMO

The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G>A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20-30 Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Mitocôndrias/metabolismo , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Conformação Proteica , Subunidades Proteicas , Prótons , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência
19.
Microb Cell ; 5(5): 220-232, 2018 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-29796387

RESUMO

Cardiolipin (CL) optimizes diverse mitochondrial processes, including oxidative phosphorylation (OXPHOS). To function properly, CL needs to be unsaturated, which requires the acyltransferase Tafazzin (TAZ). Loss-of-function mutations in the TAZ gene are responsible for the Barth syndrome (BTHS), a rare X-linked cardiomyopathy, presumably because of a diminished OXPHOS capacity. Herein we show that a partial inhibition of cytosolic protein synthesis, either chemically with the use of cycloheximide or by specific genetic mutations, fully restores biogenesis and the activity of the oxidative phosphorylation system in a yeast BTHS model (taz1Δ). Interestingly, the defaults in CL were not suppressed, indicating that they are not primarily responsible for the OXPHOS deficiency in taz1Δ yeast. Low concentrations of cycloheximide in the picomolar range were beneficial to TAZ-deficient HeLa cells, as evidenced by the recovery of a good proliferative capacity. These findings reveal that a diminished capacity of CL remodeling deficient cells to preserve protein homeostasis is likely an important factor contributing to the pathogenesis of BTHS. This in turn, identifies cytosolic translation as a potential therapeutic target for the treatment of this disease.

20.
Front Physiol ; 9: 329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670542

RESUMO

Devastating human neuromuscular disorders have been associated to defects in the ATP synthase. This enzyme is found in the inner mitochondrial membrane and catalyzes the last step in oxidative phosphorylation, which provides aerobic eukaryotes with ATP. With the advent of structures of complete ATP synthases, and the availability of genetically approachable systems such as the yeast Saccharomyces cerevisiae, we can begin to understand these molecular machines and their associated defects at the molecular level. In this review, we describe what is known about the clinical syndromes induced by 58 different mutations found in the mitochondrial genes encoding membrane subunits 8 and a of ATP synthase, and evaluate their functional consequences with respect to recently described cryo-EM structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...